Домашнее задание по физике для студентов II курса IV семестра всех факультетов

(2012)

Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов

Вариант	Номера задач			
	Модуль 5		Модуль 6	
1	5.1.01	5.2.01	6.1.01	6.2.01
2	5.1.02	5.2.02	6.1.02	6.2.02
3	5.1.03	5.2.03	6.1.03	6.2.03
4	5.1.04	5.2.04	6.1.04	6.2.04
5	5.1.05	5.2.05	6.1.05	6.2.05
6	5.1.06	5.2.06	6.1.06	6.2.06
7	5.1.07	5.2.07	6.1.07	6.2.07
8	5.1.08	5.2.08	6.1.08	6.2.08
9	5.1.09	5.2.09	6.1.09	6.2.09
10	5.1.10	5.2.10	6.1.10	6.2.10
11	5.1.11	5.2.11	6.1.11	6.2.11
12	5.1.12	5.2.12	6.1.12	6.2.12
13	5.1.13	5.2.13	6.1.13	6.2.13
14	5.1.14	5.2.14	6.1.14	6.2.14
15	5.1.15	5.2.15	6.1.15	6.2.15
16	5.1.16	5.2.16	6.1.16	6.2.16
17	5.1.17	5.2.17	6.1.17	6.2.17
18	5.1.18	5.2.18	6.1.18	6.2.18
19	5.1.19	5.2.19	6.1.19	6.2.19
20	5.1.20	5.2.20	6.1.20	6.2.20

При выполнении домашнего задания рекомендуется пользоваться методическими указаниями к решению задач по курсу общей физики. Авторы: Л.К. Мартинсон, Е.В. Смирнов. Разделы: «Волновые свойства частиц. Гипотеза де Бройля», «Уравнение Шредингера. Стационарные задачи квантовой механики», «Измерение физических величин в квантовых системах», а также методическими указаниями к домашнему заданию по курсу общей физики (раздел «Элементы квантовой механики»). Эти пособия можно найти на сайте кафедры физики МГТУ.

- 5.1.01. Американский физик Р. Хофштадтер наблюдал дифракцию электронов с энергией E=750 МэВ на ядрах ^{40}Ca . Согласно волновой теории, при дифракции волны на сфере радиуса R минимумы интенсивности наблюдаются при углах дифракции θ , определяемых выражением $sin \theta = m \cdot 0,61 \cdot \frac{\lambda}{R}$, где m целое число, а λ длина волны. В данном опыте дифракционному минимуму для m=3 отвечал угол дифракции $\theta=48^\circ$. Считая, что ядро имеет сферическую форму, найдите радиус ядра ^{40}Ca .
- 5.1.02. На какую кинетическую энергию должен быть рассчитан ускоритель заряженных частиц с массой покоя m_0 , чтобы с их помощью можно было исследовать структуры с линейными размерами l? Решите задачу для электронов и протонов в случае $l = 10^{-18}$ м, что соответствует радиусу слабого взаимодействия.
- 5.1.03. Поток нейтронов проходит через узкие радиальные щели в двух дисках из кадмия, поглощающего нейтроны. Диски насажены на общую ось так, что щели повернуты друг относительно друга на угол α . Диски вращаются с угловой скоростью $\omega = 400$ рад/с, расстояние между ними L=1 м. Найти угол α , если длина волны де Бройля пропускаемых таким устройством нейтронов равна $\lambda = 0,1$ нм..
- 5.1.04. Условие Брэгга-Вульфа с учетом преломления электронных волн в кристалле имеет вид $2d\sqrt{n_e^2-cos^2\,\theta}=k\lambda$, где d межплоскостное расстояние, $n_{\rm e}$ показатель преломления, θ угол скольжения, k порядок отражения. Найдите с помощью этого условия угол θ , если пучок электронов, ускоренный разностью потенциалов $U=85~{\rm B}$, образует максимум 2-го порядка при брэгговском отражении от кристаллических плоскостей с $d=0,204~{\rm Hm}$. Внутренний потенциал монокристалла серебра $\phi=15~{\rm B}$.
- 5.1.05. Коллимированный пучок электронов, прошедших ускоряющую разность потенциалов U=30 кВ, падает нормально на тонкую поликристаллическую фольгу золота. Постоянная кристаллической решетки золота d=0.41 нм. На фотопластинке, расположенной за фольгой на расстоянии l=20 см от нее, получена дифракционная картина, состоящая из ряда концентрических окружностей. Определите: а) длину волны де Бройля электронов λ ; б) брэгговский угол $\theta_{\rm b}$, соответствующий первой окружности; в) радиус r первой окружности
- 5.1.06. Покажите, что в атоме водорода и водородоподобных атомах на круговой стационарной боровской орбите укладывается целое число длин волн де Бройля электрона. Определите длину волны де Бройля электрона на круговой орбите с главным квантовым числом n.
- 5.1.07. Узкий пучок электронов, прошедших ускоряющую разность потенциалов U, падает нормально на поверхность некоторого монокристалла. Под углом $\theta = 55^{\circ}$ к нормали к поверхности кристалла наблюдается максимум отражения электронов первого порядка. Определите U, если расстояние между отражающими атомными плоскостями кристалла составляет d = 0,2 нм.
- 5.1.08. Найти дебройлевскую длину волны молекул водорода, соответствующую их наиболее вероятной скорости при комнатной температуре.
- 5.1.09. Частица массой m и зарядом q, имеющая дебройлевскую длину волны λ_0 влетает в пространство между обкладками плоского конденсатора параллельно им. Разность потенциалов между обкладками U, расстояние между ними d, длина пластин l. Найдите дебройлевскую длину волны частицы λ_1 после прохождения через конденсатор.

- 5.1.10. При пропускании пучка нейтронов от ядерного реактора через блок прессованного графита все нейтроны с длинами волн де Бройля короче $\lambda_0 = 0,67$ нм испытывают дифракционное отражение Брэгга-Вульфа. Проходят через блок только медленные, так называемые холодные нейтроны. Определите максимальную температуру, соответствующую самым коротким волнам де Бройля нейтронов, пропускаемых графитом, а также вычислите постоянную d решетки графита.
- 5.1.11. Считая, что минимальная энергия E нуклона (протона или нейтрона) в ядре равна 10 МэВ, оцените, исходя из соотношения неопределенностей, линейные размеры ядра.
- 5.1.12. Исходя из предположения, что заряд атомного ядра равномерно распределен по его объему, покажите, используя соотношение неопределенностей, что электроны не могут входить в состав ядра. Линейные размеры ядра считать равными $5 \cdot 10^{-15}$ м.
- 5.1.13. Используя соотношение неопределенностей энергии и времени, определите среднее время жизни атома в возбужденном состоянии τ , если естественная ширина спектральной линии излучения атома при переходе его из возбужденного состояния в основное $\Delta\lambda = 20$ фм, а длина волны излучения $\lambda = 600$ нм.
- 5.1.14. Покажите с помощью отношения неопределенностей, что для движущейся частицы, неопределенность координаты которой равна длине волны де Бройля, неопределенность скорости равна по порядку величины самой скорости частицы.
- 5.1.15. Оцените с помощью соотношения неопределенностей Гейзенберга неопределенность скорости электрона в атоме водорода, полагая размер атома $a = 10^{-10}$ м. Сравните полученную величину со скоростью электрона на первой боровской орбите.
- 5.1.16. Среднее время жизни атома в возбужденном состоянии составляет величину $\Delta t \sim 10^{-8}$ с. При переходе атома в основное состояние испускается фотон, средняя длина волны которого равна $\lambda = 500$ нм. Оцените ширину $\Delta\lambda$ и относительную ширину $\frac{\Delta\lambda}{\lambda}$ излучаемой спектральной линии, если не происходит ее уширения за счет других процессов. (Такая ширина называется естественной шириной спектральной линии).
- 5.1.17. Длина волны λ излучаемого атомом фотона составляет 0,6 мкм. Принимая время жизни возбужденного состояния $\Delta t = 10^{-8}$ с, определите отношение естественной ширины ΔE возбужденного энергетического уровня к энергии E, излученной атомом.
- 5.1.18. С помощью соотношения неопределенностей оцените минимальную энергию E_1 , которой может обладать частица массы m, находящаяся в бесконечно глубокой одномерной потенциальной яме шириной a.
- 5.1.19. Нейтрон, летящий со скоростью V = 0.1 м/с, попадает в щель с абсолютно отражающими стенками, параллельными направлению его движения. Длина щели в этом направлении l = 0.01 м, ширина $d = 10^{-6}$ м. Пользуясь соотношением неопределенностей, оцените время, в течение которого нейтрон пройдет через щель.
- 5.1.20. Используя соотношение неопределенностей энергии и времени, определите длину волны излучения λ , если среднее время жизни атома в возбужденном состоянии $\tau = 10^{-8}$ с, а естественная ширина спектральной линии излучения атома при переходе его из возбужденного состояния в основное $\Delta\lambda = 20$ фм.

- 5.2.01. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите массу частицы m, если ширина ямы a и разность энергий второго и первого возбужденных состояний равна ΔE .
- 5.2.02. Частица находится в двумерной прямоугольной потенциальной яме с бесконечно высокими стенками. Координаты x и y частицы лежат в пределах 0 < x < a, 0 < y < b, где a и b стороны ямы. Определите вероятность нахождения частицы с наименьшей энергией в области:

а)
$$0 < x < \frac{a}{4}$$
 (P_1) ; б) $0 < y < \frac{b}{4}$ (P_2) ; в) $0 < x < \frac{a}{4}$, $0 < y < \frac{b}{4}$ (P_3) . Убедитесь, что $P_1 \cdot P_2 = P_3$.

- 5.2.03. Частица массой m_0 находится в основном состоянии в двумерной квадратной потенциальной яме с бесконечно высокими стенками. Найдите энергию частицы, если максимальное значение плотности вероятности местонахождения частицы равно w_m .
- 5.2.04. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками, имеющей ширину a. В каких точках интервала 0 < x < a плотность вероятности обнаружения частицы одинакова для основного и второго возбужденного состояний?
- 5.2.05. Частица массой m_0 находится в одномерном потенциальном поле U(x) в стационарном состоянии, описываемом волновой функцией

$$\psi(x) = A \cdot exp(-\alpha \cdot x^2),$$

где A и α - заданные постоянные (α >0). Найдите энергию частицы и вид функции U(x), если U(0)=0 .

- 5.2.06. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите отношение вероятностей нахождения частицы в средней трети ямы для первого и второго возбужденных состояний.
- 5.2.07. Частица массы m находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите число dN энергетических уровней в интервале энергий (E, E+dE), если уровни расположены весьма густо.
- 5.2.08. Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите ширину ямы, если минимальное энергетическое расстояние между уровнями электрона в яме равно тепловой энергии kT при комнатной температуре.
- 5.2.09. Частица массы m локализована в трехмерной сферически симметричной потенциальной яме радиуса a с непроницаемыми стенками. Для состояния, в котором волновая функция частицы зависит только от r, максимальное значение плотности вероятности местонахождения частицы равно P_m . Найдите радиус ямы r и энергию частицы E в данном состоянии.

<u>Указание:</u> Волновую функцию частицы следует искать в виде $\psi(r) = \frac{u(r)}{r}$.

5.2.10. Электрон находится в трехмерной сферически симметричной потенциальной яме с непроницаемыми стенками. Найдите радиус ямы a, если для сферически симметричного состояния электрона значение минимальной энергии равно E_0 .

<u>Указание:</u> Волновую функцию частицы следует искать в виде $\psi(r) = \frac{u(r)}{r}$.

- 5.2.11. Электрон с энергией E=4.9 эВ налетает на прямоугольный потенциальный барьер высотой U=5 эВ. Оцените, при какой ширине барьера d коэффициент прохождения электрона через барьер будет равен D=0.2?
- 5.2.12. Электрон, обладающий энергией E = 50 эВ, встречает на своем пути потенциальный порог высотой U = 20 эВ. Определите вероятность отражения электрона от этого порога.
- 5.2.13. Микрочастица налетает на прямоугольный потенциальный порог высотой U_0 . Энергия частицы равна E, причем $E > U_0$. Найдите коэффициент отражения R и коэффициент прозрачности D этого барьера. Убедитесь, что значения этих коэффициентов не зависят от направления движения падающей частицы (слева направо или справа налево).
- 5.2.14. Найдите коэффициент прохождения частицы массой m_0 через треугольный потенциальный барьер вида

$$U(x) = \begin{cases} 0, & x < 0 \\ U_0 \left(1 - \frac{x}{d} \right), & 0 < x < d \\ 0, & x > d \end{cases}$$

в зависимости от энергии частицы E при $E < U_0$. Такой вид потенциального барьера соответствует барьеру, преодолеваемому электронами при холодной (полевой) эмиссии из металла.

5.2.15. Найдите коэффициент прохождения частицы массой m_0 через потенциальный барьер вида

$$U(x) = \begin{cases} 0, & x < 0 \\ U_0 \left(1 - \frac{x^2}{d^2} \right), 0 < x < d \\ 0, & x > d \end{cases}$$

в зависимости от энергии частицы E при $E < U_0$.

- 5.2.16. Частица с энергией E налетает на прямоугольный потенциальный порог высотой U_0 . Найдите приближенное выражение для коэффициента отражения R для случая $\frac{U_0}{E}$ << 1 .
- 5.2.17. Электрон с энергией E движется над прямоугольной потенциальной ямой шириной a и глубиной U_0 . Найдите значения энергии E, при которых электрон будет беспрепятственно проходить над ямой. Убедитесь, что это будет происходить при условии, что ширина ямы a равна целому числу дебройлевских полуволн частицы внутри ямы. Вычислите минимальную энергию электрона E_{min} при $U_0 = 10$ эВ и a = 0.25 нм.
- 5.2.18. Частица массы m_0 , обладающая энергией E, налетает на прямоугольный потенциальный барьер высотой U_0 и шириной a. Энергия частицы $E > U_0$. Найдите коэффициент «надбарьерного» отражения R и коэффициент прозрачности барьера D для этой частицы.
- 5.2.19. Частица с энергией E налетает на прямоугольный потенциальный порог высотой U_0 ($E>U_0$). Найдите приближенное выражение для коэффициента отражения R для случая $\frac{E-U_0}{U_0}$ << 1 .

- 5.2.20. В 1921 г. немецкий физик К. Рамзауэр обнаружил аномальную «прозрачность» атомов криптона для электронов с энергией E=0,6 эВ. Этот эффект обусловлен волновыми свойствами электронов. Моделируя поле атома с помощью одномерной прямоугольной потенциальной ямы глубиной $U_0=2,5$ эВ, оцените радиус атома криптона.
- 6.1.01. Волновая функция основного состояния электрона в атоме водорода имеет вид

$$\psi(r) = A \cdot exp\left(-\frac{r}{a}\right),\,$$

где r - расстояние электрона от ядра, a - радиус первой боровской орбиты. Определите среднее значение квадрата расстояния $< r^2 >$ электрона от ядра в этом состоянии.

- 6.1.02. Частица находится в двумерной квадратной потенциальной яме с непроницаемыми стенками во втором возбужденном состоянии. Найдите среднее значение квадрата импульса частицы $< p^2 >$, если сторона ямы равна a.
- 6.1.03. Частица массой m_0 находится в одномерной потенциальной яме с непроницаемыми стенками во втором возбужденном состоянии. Найдите среднее значение кинетической энергии частицы $\langle E_{\scriptscriptstyle K} \rangle$, если ширина ямы равна a.
- 6.1.04. Покажите, что в состоянии ψ , в котором оператор \hat{L}_z имеет определенное собственное значение, средние значения $< L_x > \mu < L_y >$ равны нулю.

<u>Указание</u>: воспользуйтесь коммутационными соотношениями для операторов $\hat{L}_{_{\! x}},~\hat{L}_{_{\! y}}$ и $\hat{L}_{_{\! z}}$.

- 6.1.05. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a), имеет вид $\psi(x) = A \cdot x \cdot (a x)$. Найдите среднюю кинетическую энергию частицы в этом состоянии, если масса частицы равна m_0 .
- 6.1.06. В некоторый момент времени частица находится в состоянии, описываемом волновой функцией, координатная часть которой имеет вид

$$\psi(x) = A \cdot exp\left(-\frac{x^2}{a^2} + ikx\right),\,$$

где A и a - некоторые постоянные, а k - заданный параметр, имеющий размерность обратной длины. Найдите для данного состояния средние значения координаты < x > и проекции импульса частицы $< p_x >$.

- 6.1.07. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a), имеет вид $\psi(x) = A \cdot sin^2 \left(\frac{\pi x}{a}\right)$. Найдите вероятность пребывания частицы в основном состоянии.
- 6.1.08. Найдите средние значения кинетической и потенциальной энергий квантового осциллятора с частотой ω_0 в основном состоянии, описываемом волновой функцией

$$\psi(x) = A \exp\left(-\frac{m_0 \omega_0 x^2}{2\hbar}\right),\,$$

где A - некоторая постоянная, а m_0 - масса осциллятора.

6.1.09. Докажите, что квадрат момента импульса частицы L^2 может быть одновременно измерим с кинетической энергией частицы $E_{\rm K}$.

<u>Указание:</u> Рассмотрите коммутатор операторов \hat{L}^2 и \hat{E}_{κ} .

6.1.10. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме шириной a с бесконечно высокими стенками имеет вид

$$\psi(x) = A \cdot \sin\left(\frac{3\pi x}{2a}\right) \cos\left(\frac{\pi x}{2a}\right).$$

Считая, что масса частицы равна m_0 , найдите среднюю кинетическую энергию частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x, t)$.

6.1.11. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме шириной a с бесконечно высокими стенками имеет вид

$$\psi(x) = A \cdot \sin\left(\frac{2\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right).$$

Считая, что масса частицы равна m_0 , найдите среднее значение импульса частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x, t)$.

- 6.1.12. Определите среднее значение кинетической энергии $< E_{\rm KWH} >$ и средней квадратической скорости электрона ${\rm v}_{\rm KB}$ в основном состоянии атома водорода.
- 6.1.13. В момент времени t = 0 волновая функция частицы в одномерной потенциальной яме с бесконечно высокими стенками имеет вид

$$\psi(x) = A \cdot \sin\left(\frac{5\pi x}{2a}\right) \cos\left(\frac{\pi x}{2a}\right).$$

Считая, что масса частицы равна m_0 , найдите среднюю кинетическую энергию частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x, t)$.

- 6.1.14. В момент времени t = 0 волновая функция частицы в одномерной потенциальной яме шириной a с непроницаемыми стенками является равновероятной суперпозицией второго и четвертого возбужденных состояний. Считая, что масса частицы равна m_0 , найдите среднее значение импульса частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x, t)$.
- 6.1.15. Найдите среднее значение кинетической и потенциальной энергии квантового гармонического осциллятора с частотой ω_0 , находящегося в первом возбужденном состоянии, описываемом волновой функцией

$$\psi(x) = A \cdot x \cdot exp\left(-\frac{m_0 \omega_0 x^2}{2\hbar}\right), \quad -\infty < x < +\infty.$$

Здесь A - некоторая нормировочная постоянная, m_0 - масса частицы.

6.1.16. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \cdot \sin^3\left(\frac{\pi x}{a}\right).$$

Найдите вероятность пребывания частицы в первом возбужденном состоянии.

6.1.17. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \cdot \sin^3\left(\frac{\pi x}{a}\right).$$

Найдите среднее значение кинетической энергии частицы в этом состоянии.

6.1.18. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \cdot \left(\sin\left(\frac{\pi x}{a}\right) + \sin^2\left(\frac{\pi x}{a}\right) \right).$$

Найдите вероятность пребывания частицы в первом возбужденном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x, t)$.

6.1.19. Определите результаты измерения проекции импульса $L_{\rm z}$ и их вероятности для системы, находящейся в состоянии, описываемом волновой функцией

$$\psi(\varphi) = A \cdot (1 + \sin(2\varphi)),$$

где ф - азимутальный угол.

6.1.20. Определите результаты измерения проекции импульса $L_{\rm z}$ и их вероятности для системы, находящейся в состоянии, описываемом волновой функцией

$$\psi(\varphi) = A \cdot (1 + \cos \varphi),$$

где ф - азимутальный угол.

- 6.2.01. Оцените минимальную дебройлевскую длину волны свободных электронов в металле при температуре T=0, считая, что металл содержит по одному свободному электрону на атом, а его кристаллическая решетка является простой кубической с периодом a.
- 6.2.02. Чему равна энергия Ферми E_F натрия при температуре T = 0, если число свободных электронов, приходящихся на один атом натрия, составляет $\eta = 0.96$? Плотность натрия $\rho = 0.97 \text{ кг/м}^3$.
- 6.2.03. Найдите интервал между соседними энергетическими уровнями свободных электронов в металле при температуре T = 0 вблизи уровня Ферми. Считайте, что концентрация свободных электронов $n = 3 \cdot 10^{28} \text{ м}^{-3}$.
- 6.2.04. Найдите среднюю скорость свободных электронов в рубидии при температуре T = 0, если энергия Ферми рубидия $E_F = 1.82$ эВ.
- 6.2.05. Для того чтобы средняя энергия электронов классического (невырожденного) электронного газа была равна средней энергии свободных электронов в меди при температуре T = 0, классический газ электронов нужно нагреть до температуры $T = 3 \cdot 10^4$ К. Найдите энергию Ферми E_F для меди.

- 6.2.06. Найдите энергию Ферми E_F для алюминия при температуре T=0. Считайте, что на каждый атом алюминия приходится $\eta=3$ свободных электрона, а плотность алюминия $\rho=2,7\cdot10^3$ кг/м³.
- 6.2.07. При какой температуре металла T вероятность найти в нем электрон с энергией E, превосходящей энергию Ферми E_F на $\Delta E = 0.5$ эВ, составляет P = 0.02?
- 6.2.08. Найдите при температуре T = 0 плотность состояний электронов в серебре dn/dE вблизи уровня Ферми, если энергия Ферми серебра составляет $E_F = 5.5$ эВ.
- 6.2.09. Определите, во сколько раз изменится вероятность заполнения электронами в металле энергетического уровня, расположенного на $\Delta E = 0.1$ эВ выше уровня Ферми, если температуру металла повысить от $T_1 = 300$ К до $T_2 = 400$ К.
- 6.2.10. Найдите положение уровня Ферми и суммарную кинетическую энергию свободных электронов в объеме $\Delta V = 1$ см³ серебра при температуре T = 0, полагая, что число свободных электронов равно количеству атомов серебра.
- 6.2.11. Получите выражение для постоянной Холла R_H в примесном полупроводнике, в котором концентрации электронов и дырок равны, соответственно, n и p, а их подвижности μ_n и μ_p . При каком соотношении между этими величинами эффект Холла будет отсутствовать?
- 6.2.12. Тонкая металлическая лента шириной d и толщиной a помещена в однородное магнитное поле с индукцией B, перпендикулярное плоскости ленты. По ленте пропускают ток I. Найдите разность потенциалов, возникающую между краями ленты (на расстоянии d), если концентрация свободных электронов в металле равна n.
- 6.2.13. По металлической трубе с внутренним и внешним радиусами, равными, соответственно, R_1 и R_2 , течет равномерно распределенный ток I. Определите разность потенциалов, установившуюся между внутренней и наружной поверхностями трубы. Концентрация свободных электронов в металле равна n.
- 6.2.14. Температурный коэффициент сопротивления $\alpha = \frac{1}{\rho} \frac{d\rho}{dT}$ чистого беспримесного германия при комнатной температуре равен $\alpha = -0.5~{\rm K}^{-1}$. Найдите красную границу фотопроводимости λ_K для этого полупроводника при низких температурах.
- 6.2.15. Собственный полупроводник с шириной запрещенной зоны $\Delta E_g = 0,67$ эВ находится при температуре $T_1 = 300$ К. До какой температуры T_2 нужно нагреть полупроводник, чтобы его проводимость увеличилась в $\eta = 2$ раза?
- 6.2.16. Удельное сопротивление некоторого чистого беспримесного полупроводника при комнатной температуре $\rho = 50 \text{ Ом·см}$. После включения источника света оно стало $\rho_1 = 40 \text{ Ом·см}$, а через t = 8 мс после выключения источника света удельное сопротивление оказалось $\rho_2 = 45 \text{ Ом·см}$. Найдите среднее время жизни электронов проводимости и дырок.
- 6.2.17. Ширина запрещенной зоны полупроводника $\Delta E_g = 1,0$ эВ. Какова вероятность заполнения электроном вблизи дна зоны проводимости при температуре T = 300 К? Увеличится ли эта вероятность, если на полупроводник действует электромагнитное излучение с длиной волны $\lambda_1 = 1$ мкм; $\lambda_2 = \text{мкм}$?

- 6.2.18. Удельное сопротивление чистого кремния при комнатной температуре равно $\rho = 1000~{\rm Cm}\cdot{\rm m}$, ширина запрещенной зоны $\Delta E_g = 1,12~{\rm sB}$. Предполагая, что эффективные плотности состояний и подвижности электронов и дырок не зависят от температуры, найдите величину удельного сопротивления кремния при температуре $T = 320~{\rm K}$.
- 6.2.19. Определите ток через образец кремния, имеющий форму прямоугольного параллелепипеда с размерами $a \times b \times c = 50 \times 5 \times 1$ мм, если вдоль образца приложено напряжение U = 10 В. Известно, что концентрация электронов в полупроводнике $n = 10^{21}$ м⁻³, а их подвижность $\mu_n = 0.14$ м²/(B·c).
- 6.2.20. Найдите отношение полного тока через полупроводник к току, обусловленному только дырочной составляющей: а) в собственном германии; б) в германии p-типа с удельным сопротивлением $\rho = 0.05$ Ом·м. Принять собственную концентрацию носителей заряда при комнатной температуре $n_n = n_p = 2.1 \cdot 10^{19}$ м⁻³, подвижность электронов $\mu_n = 0.39$ м²/($B \cdot c$), подвижность дырок $\mu_p = 0.14$ м²/($B \cdot c$).