Project 3

Your project is to accelerate your heat equation solver from Project 1 using MPI and evaluate the performance of this code for various domain sizes. You are given some liberty regarding how you want to implement the message passing. We encourage you to use MPI_Cart_Create for your processor topology and MPI_Datatype for packing/unpacking, but neither is required.

A report should be prepared along with your code. This report should contain:

1. A description of the distributed computing approach and what enhancements/discoveries you made.

Discuss computational considerations such as communications, load balancing, memory and synchronization.

2. Speedup plots: Time your code runs using the unix “time” command. Time the runs multiple times and record the average. Three domain sizes should be measured: 100X100X100, 200X200X200, and 400X400X400 at 4 different processor counts (1,4, 16 and 64) and plotted (as SPEEDUP) on the same graph. The second plot should do the same, but for the CrankNicolson scheme. Make sure axes are either proportional or an “ideal” line is plotted.

3. Weak scaling plot: To compare to your OpenMP implementation, plot time versus processors for increasing domain size: 100X100X100 on 1 processor, 200X100X100 on 2 procs, 200X200X100 on 4 procs and 200X200X200 on 8 procs. Put Euler and CrankNicolson as two lines on the same plot.
Project 4

Your project is to implement checkpointing and parallel I/O in your heat equation solver from Project 3 using MPIIO and evaluate the performance of this code for various domain sizes. Initial input files may or may not be read in parallel, but the key enhancement here is the ability of your code to read (in parallel) the data from a saved time step and be able to proceed through some number of time steps and save the output in parallel.

A report should be prepared along with your code. This report should contain:

1. A description of the implementation of parallel I/O and how the overall structure of your parallel code has been altered. Be sure to mention computational considerations such as communications, load balancing, memory and synchronization.

2. Speedup plots: Time your code runs using the unix “time” command. Time the runs multiple times and record the average. Three domain sizes should be measured: 100X100X100, 200X200X200, and 400X400X400 at 4 different processor counts (1,4, 16 and 64) and plotted (as SPEEDUP) on the same graph. The second plot should do the same, but for the CrankNicolson scheme. Make sure axes are either proportional or an “ideal” line is plotted.

3. Weak scaling plot: To compare to your OpenMP implementation, plot time versus processors for increasing domain size: 100X100X100 on 1 processor, 200X100X100 on 2 procs, 200X200X100 on 4 procs and 200X200X200 on 8 procs. Put Euler and CrankNicolson as two lines on the same plot.

