Project 1
Your project is to implement a heat equation solver and evaluate the performance of this code for various domain sizes and with various compiler optimizations. You should use the forward Euler finite difference method and then Crank-Nicolson. On one side of the domain you will apply a constant nonzero source. On the opposing side, you will apply a zero valued sink. All other boundaries should be reflecting (Neumann B.C.). While the domain will be homogeneous for this assignment, the thermal conductivity will be varied in future assignments, so you should make this variable.

A report should be prepared along with your code. This report should contain:

1. A description of the code and what enhancements/discoveries you made. Feel free to write the routine in whatever style you like. The key is that the heat equation is solved and the solution methods listed above are implemented. Discuss numerical considerations (e.g., time step, error), computational considerations (e.g., memory, array ordering for data locality) and algorithmic considerations (Euler vs. Crank-Nicolson).

2. A validation section where you compare to an analytical solution. Also, an integration of energy over the domain to ensure conservation.

3. Performance plots. Time your code runs using the unix “time” command. Time the runs multiple times and record the average. Four domain sizes should be measured: 100X100X100, 200X100X100, 200X200X100 and 200X200X200. Plot domain size (1million, 2 million, 4 million, 8 million) versus time. The first plot should reflect performance without optimization (-O0). A second plot where compiler optimizations have been added (-O3- fexpensive-optimizations-ffast-math) should then be made. The next two plots should do the same, but for the Crank-Nicolson scheme.
Project 2 
Your project is to accelerate your heat equation solver from Project 1 using OpenMP pragmas and evaluate the performance of this code for various domain sizes.

A report should be prepared along with your code. This report should contain:

1. A description of the multithreading approach and what enhancements/discoveries you made. Discuss computational considerations such as data locality, scoping, load balancing 

2. Speedup plots: Time your code runs using the unix “time” command. Time the runs multiple times and record the average. Two domain sizes should be measured: 100X100X100 and 200X200X200 at 4 different processor counts (1,2,4 and 8) and plotted (as SPEEDUP) on the same graph. The second plot should do the same, but for the Crank-Nicolson scheme. Make sure axes are either proportional or an

“ideal” line is plotted.

3. Weak scaling plot: Plot time versus processors for increasing domain size: 100X100X100 on 1 processor, 200X100X100 on 2 procs, 200X200X100 on 4 procs and 200X200X200 on 8 procs. Put Euler and Crank-Nicolson as two lines on the same plot.

